
Donuts for DBAs
By Redmond Bim.

The aim of this column is to provide

and outlet for Oracle Database

Administrators and Developers who

are tired of hearing the same marketing

blurb and reading the same articles

about managing and developing an

Oracle database.

The goal is to give a different

perspective to the standard topics and

offer an insight into the workings of

the Oracle database the reader is rarely

ever subjected to.

It is hoped that these articles will make

the reader question the workings of

their environment and hopefully

improve their situation.

The material contained in this column

and future columns is designed to be

provocative and it is important to stress

that the views expressed are those of

the author only. They do not represent

those of the publisher of this magazine,

Oracle or any business partners of

Oracle.

I am frequently involved in tuning

database environments, in fact I have

been involved in tuning the Oracle

database since Oracle V5 a long time

ago. I have seen it evolve, improve and

grow stronger, but there has always

been a common theme when it comes

to tuning the database that has never

changed. I will cover this point in a

moment.

First though what is the point of

tuning? Typically to make the database

run faster, get more bang for the buck,

make the users happy and ensure the

DBA is not working to 3am waiting for

indexes to recreate.

The art of tuning is becoming a lost

science and it is disappearing because

the focus is moving away from the

cause and to the cure.

The cure typically involves reading

countless books on Oracle Database

Management, analysing them and

looking for those small gems that will

save the day.

It also involves running those

wonderful tools supplied by Oracle and

other Vendors which offer the panacea

for tuning. More on these tools in

another column.

The cure can at time involve attending

Oracle training courses getting

indoctrinated as to when to create an

index, when to defragment a table and

when to get certified. More on this

topic in another column also.

The point is, is that sometimes the

above cures work and the performance

issue is resolved. Wonderful, everyone

is happy. Well not really, because one

day later, one week later, one month

later the same problem re-occurs and

there is another tuning issue.

Database administrators across the

world are always fire fighting, and if

you haven’t heard this term before, it

means working very hard to solve last

minute but crucial issues. They are

overworked, underpaid and never have

time to do the important tasks. Sound

familiar? Most cry out to their bosses,

give me more staff, more training and I

will be able to do more much better, be

more efficient and get more done.

Well I have some bad news. The world

doesn’t work that way, gone are the

days of unlimited resources on a

computer project and be grateful they

have gone, because they never worked

anyway. More resources thrown at a

problem typically made it worse not

better. So next time you feel

overworked and stressed because you

have an impossible workload take a

different tact to resolve it. How? Well

I’ll cover this later as well. There’s

nothing like a little bit of suspense to

keep you reading.

To resolve the tuning issues focus on

the cause of the problem not the cure.

Well you might say, what’s new here?

The Oracle tuning manual pretty much

says the same thing. Start at step one,

look at the database structure, get the

design right, move to step two, the

environment, then look at the database

structure. Stop there. It might seem

like the cause, but from what I see this

is still the cure. Your mindset is still

set into looking at the database and

fixing it.

Enough and lets get to the point. The

cause in nearly all sites I have been

too, why there is poor tuning is to do

with the relationship between the DBA

team and the Developers. Now’s the

time to close the magazine and walk

away because the author sounds like a

lunatic. If you do, you will never know

why and will forever lose out.

For starters, throw out the window the

concept that tuning is logical. You

follow these magical steps and voila

you have a perfectly tuned database.

Sometimes this works, but that’s more

by luck than anything else. To many

DBAs and Developers are logical. I

guess it can’t be helped because

technology is logical and by

programming you are training the mind

to follow a logical path. How much fun

is poked at Vulcans because they are

logical.

Follow logic and you are doomed to

eventual failure. The human brain isn’t

based on logic, it’s based on neural

networks that are better suited for

pattern matching. The best developers

who debug programs resolve them by

using techniques found in an Edward

De Bono book on lateral thinking.

Most don’t realise the technique they

are using. It’s beyond the scope of this

article to cover these tuning methods,

but suffice it to say they might get

included in a later article.

I deliberately digressed to highlight the

point. Most DBA’s and Developers are

caught in the trap about tuning an

environment and can’t see where the

real problem is. Sure the database

might be running slow, but why did it

get this way in the first place?

That’s a very good question and I am

glad I asked it, because it raises

another point that gets me very

frustrated with tuning manuals. They

assume you have control over the

application. Ten years ago there were

hardly many off the shelf products, so

most sites had to develop their own.

Now it’s very different. Thousands of

business partners offering the complete

range of products designed to meet an

organisations needs. In these cases the

code is a black box, can’t be touched

or tuned and this leaves the DBA in a

quandary on tuning. How do you tune

these products?

The tuning manuals assume you can

get in and rewrite and change the

underlying code. If you can’t do this

then the tuning manuals are useless.

So we have two types of situations in

today’s environment. One where there

are Developers building in-house

applications and the other where the

DBAs having to manage a black box

product. In a fair number of

environments both situations are true,

though each requires a different tactic

for resolving it.

I’m going to address both points,

starting with the all-familiar

relationship between the DBA and the

Developers. Lets describe some typical

environments.

First, due to some reason found in the

organisation’s history books, the

Developers have determined that the

DBAs are only suitable for performing

backups and they know what’s best for

the environment.

Second, because of budget constraints

there wasn’t time to get the DBAs

involved in the original design stage.

Third, the DBAs don’t trust the

developers because they are all gun-ho

and have no concept of change

management.

Fourth, due to management’s lack of

vision, the DBAs are constrained to

use an antiquated version of Oracle.

The role of DBAs and Developers in

an organisation is rarely understood.

The developers feel it is their role to

build the application and they see the

DBAs as impediments in this goal.

Sure they pay them the occasional lip

service and acknowledge their

presence but most see DBAs as

backyard players only to be bought in

when things go wrong.

The DBAs see the Developers as small

minded, coders who have no vision or

global understanding of the

organisations environment. They have

no concept of the pressures they have

to endure dealing with production

databases and hate having to come in

and clean up the mess left behind by

reticent developers. Some long for the

good old days when waterfall

development was the only respected

way of building an application and

there was an agreed and formalised

arrangement between the two groups.

Given the advent of rapid application

development. Actually that’s another

point. No one really develops using

RAD, they think they do, but it’s

usually just a term coined for not doing

development using the Waterfall

method.

So with Rapid Application

Development, the strict formalised

relationship between the DBA and

Developer has collapsed. It’s withered

and died, but it has given rise to

numerous opportunities for

enterprising consultants to cash in and

come into organisations and do

specialised tuning. So maybe it’s not a

bad thing.

At this stage I do feel sorry for the

DBAs at really small sites where they

are also the Developer, they must be

going through an awful identity crisis

reading this article. Actually you are

the lucky ones, but the biggest problem

you face is managing yourself.

So lets stopping being focused on the

negative and see what can be done to

fix the problem. And that’s another

issue, it might not be a problem. The

relationship between DBAs and

Developers is going to be fixed by

applying some logic and rules to it. It’s

a fanciful thought but would never

work.

Its not a marriage counselling issue

either. Its generally not safe to put a

DBA and Developer in the same room

together in the best of times. The two

don’t need to be married to each other

to ensure the database environment is

perfectly tuned. In fact its best that the

two groups don’t get on.

By now you are probably very

confused as I seem to be contradicting

myself. If you see this as happening

then you have fallen for the standard

logic trap, a contradiction is when two

logical events don’t add up as the

previous scenario seems to point to. As

mentioned, we are dealing with the

human psyche here and not logic so try

and view this from a different point of

view to try and understand the point

being made.

The goal of the developer is to build a

product that satisfies the needs of their

customer within budgetary constraints.

The goal of the DBA is to ensure high

availability of the database, security of

the data, and all applications accessing

the database share resource equitably.

Both the Developers and the DBAs

have different goals and drives to

adhere to. At times the DBA is

required to slow down the developer to

protect them from themselves. It is also

important they do not report to the

same management as the Developers.

When this happens there is trouble.

Because the DBA is locked into the

same goals as the developer and then

they lose their independence.

At times, the DBA has to say no to a

developers request, even if this impacts

the developers goals and business

objective.

Too often though, the DBA usurps too

much power and make the developers

goal too difficult to achieve. They

boycott developer activities for

hitherto, unrealistic goals. It’s at this

time the clash occurs and the power is

eventually rescinded from the control

of the DBA.

There could be seen to be a balancing

act between the two groups, a constant

struggle for control and balance. If

either side gains too much power and

control the end result will be a poorly

performing database.

Lets go through some real life based

scenarios. In organisation A, the lead

developer is closet managerial material

and is focused fully on the goals of

building and delivering an application

(there is a bonus at stake). The new

DBA, fresh out of training arrives on

the scene. To better visualise this, try

and picture the squeaky voiced kid

from the Simpsons who works the till

in Krusty Burgers. The two aren’t well

matched and when it comes to any

standoff the developer invariably wins.

The developer believes he knows

everything about being a DBA, he’s

off course read the concepts manual

and can spout the odd piece of

technical jargon. This belief system

stems from the marketing propaganda

bestowed from high that says the

database is now so easy to use any one

can set one up. The developer then

gives the DBA the token task of setting

up backups. A job he believes fits in

the same category as muck racking. Of

course, his ulterior motive is that if the

DBA can’t even manage this, he will

take the role and move it into his team.

If this is sounding all too familiar then

it’s not too late to panic, but let me

continue.

All goes initially well for our all

conquering developer. The project is

running on schedule and it’s now time

to go live with the code. It goes live

and that’s when the problems start to

begin. Two months into the project and

the whole application is running slow.

It’s impacting other ones running and

no one is happy. Of course the

developer has a fall back plan and

conveniently blames the DBA, I mean

it’s the DBAs job for fixing

performance problems isn’t it?

I hope by now you are seeing where

the real cause of the performance

problem is. If you aren’t and you

believe its now the job of the DBA to

fix the developer’s problem, I suggest

you stop reading this and go back to

the comfortable life you are living in.

Performance is obviously not an issue

for you and blissful ignorance is the

contentment you deserve.

Anyhow, back to the real world. The

DBA has no idea what to do, and is

wondering if they should be attending

more training courses. The developer

is getting edgy because the users aren’t

happy. And then they bring in the

outside consultant to resolve it. The

political quagmire the consultant gets

embroiled in, only further justifies

their desire to increase their hourly

rate. The discussion between the

consultant (C) and the developer (D)

goes like this. And this conversation is

the same wherever you go:

C: “Your design has some fundamental

design flaws in it”

D: “It was built using tool (unnamed)

and conforms to 3
rd
 Normal Form”

C: “Off course, but being normalised is

no guarantee it will perform well.”

D: “We had tight budgetary

constraints. We didn’t have time to

seriously performance tune it.”

(This is a red flag to the performance

consultant. If there were tight budget

problems how can they afford to have

them in now reviewing performance).

D: “This problem doesn’t happen with

SQL*Server”

(Gosh, another red flag waved here.

Blame the database vendor. The grass

is greener on the other side. If they

raise this, it means they really have no

clue about databases. Time to give

them a shovel and walk away – but a

good consultant likes a challenge and

will stay on, no matter how fast the

ship is sinking).

D: “It performed well in acceptance

testing”

(Yes and like the point above, so do

small database vendor products. It’s

this issue of scaling that leaves most

developers in dry dock)

D: “We added some indexes, and that

fixed some of the problems, but other

ones then appeared”

(The consultant is biting their tongue at

this point. The design is flawed,

haphazardly adding indexes is not

going to seriously get anywhere).

C: “You need to rebuild these tables,

rewrite these and fix here and here”

D: “Off course we will”

C: “And you need to be on a stable

version of Oracle.”

D: “We didn’t have time to upgrade”

The consultant by this stage is

wondering where the DBA is. If they

had got involved early on in the project

these issues would never have

materialised.

C: “You should be on the latest

release, it fixes a number of problems”

Dba: “I tried but they wouldn’t let me,

said it wasn’t important to the project”

C: “But its your job to stipulate what

the platform is”

The conversation could go on and on,

but I hope the point has been made.

The problem of tuning was due to the

lack of a formal relationship between

the Developer and the DBA.

Now for the fun bit. Who is to blame

or at fault in this situation? It’s always

enjoyable to point the finger at

someone. I mean, that’s what this

article is all about, trying to ridicule

the poor developer or DBA.

No, I’m not going to get caught in that

trap, no matter how enjoyable it seems

to be.

Strength of character and personality

should not be the driving force for who

wins arguments between developers

and DBAs. Many large organisations

can attest to this fact and most have

learnt it the hard way. Their solution is

to smother the problem in bureaucracy

and red tape, which actually makes it

worse. How many change control

manuals have I seen gathering dust on

shelves, written by well meaning

individuals with the goal of preventing

disasters described above. By writing

voluminous amount of documentation

just drives each party into a corner and

ensures that legal representation is

needed by each side.

What is needed, and this is a foreign

concept in most organisations, is a

good manager who actually

understands both sides technically and

can balance the needs. Sure some basic

procedures are needed, but no more

than a page.

The manager needs the power over

both sides and needs to have sound

business sense as well as the technical

knowledge to understand the issues.

And that’s a challenge. You would

think with the huge amounts of money

managers get paid they would have

both these skill sets. Typically they

only have one, and if they only have

one of these skill sets and try to bluff

their way through the other one, then

they are more dangerous than the

DBAs and the Developers combined.

It’s been said many a time that a

manager with a little bit of technical

knowledge is more dangerous than one

without any technical knowledge.

The corollary from this is quite roguish

in its implications. Ultimately the

manager over the developers and the

DBAs is responsible for the

performance aspects of the application.

Put in a good manager, who can

establish good practices for both sides

and ensure that they keep each other

well balanced, and the result should be

an environment conducive to suitable

performance for all applications. It

won’t be a perfect environment, and

there will be issues, but at least the

fundamental structure will not be

flawed.

Don’t go away, there is still more. I

haven’t covered the other scenario

where the DBA is the one that has the

control. Here the outcome is slightly

different.

In this scenario, our DBA through

various nefarious activities has put

themselves in the central seat of power

and control over the database

environment. What they say goes and

they have the control over anything

that goes into and out of the database.

The justification for this control is

based on protecting the production

environment and ensuring its stability

and reliability.

A hefty volume of change management

procedures ensures production changes

are few and far between. This ensures

the production environment remains

stable and availability remains high.

This position ensures the DBA

maintains control. Attempts to usurp

this power are always rebuffed by the

high availability figures constantly

touted by the controlling DBA.

Though the users are happy with the

availability, the business is ultimately

suffering as the whole environment has

become inflexible and cannot adjust

quickly to market demands.

New projects take months to initiate

and move to production, rather than the

weeks needed to remain competitive.

The result is that by the time the

project is moved to production, so

many restrictions are placed on it, to

ensure it performs well and does not

impact anything else, that the project

fails in maintaining its original goal of

being of benefit to the users.

When the DBA hears of user

complaints they invariably blame the

inexperience of the development team

and lament for the days when

developers knew how to design and

build.

Astute developers, unable to break the

reigns of power instigated by the DBA,

will use a number of ploys to get the

project built. These include

outsourcing the development, which is

in effect hiding the application from

the DBA. Only when the project is

completed is it given to the DBA for

implementation in production. It

achieves the short term goal of

developing the project, but we don’t

resolve the performance issue.

Some not so astute developers, fresh

out of training college will not see

where the problem is, and expound the

virtues of “Mickey Mouse” databases

as being the solution to quick

development. They will label Oracle as

a dinosaur and impossible to work with

and if they had SQL*Server then

development would be so much easier.

Taken to the worst extreme,

inexperienced managers will actually

believe the whimpering cries of these

developers and embark on a campaign

to replace the Oracle database with the

“easier to use one”. This actually

makes the whole situation worse and is

an incredibly dangerous position to be

in. The medium to long term costs are

actually greater. Rather than fix the

core problem, a bandaid cure is given.

Bureaucracies evolve and grow over

time. The red tape increases when

management determine it’s not

appropriate to blame the individual for

making a mistake but rather a process

was not in place to prevent the problem

from occurring. In addition

management want to protect the

organisation from employees who are

moving between jobs, on leave or are

leaving and taking corporate

knowledge with them. Procedures are

written down, effectively idiot-

proofing the environment. Taken to the

extreme and we start to see a situation

all to commonly found in the USA

where manufacturers have to write

obvious “how not to use” instructions

on labels. Like “don’t drive whilst

drinking the hot coffee otherwise it

will spill in your lap”, “don’t wear

slippers whilst climbing a ladder”, or

“don’t use the hair dryer whilst having

a bath”.

There must be a healthy balance

between common sense and the need

for procedures. Its actually interesting

to note that its typically management

that want these procedures, but when it

comes to management reports, they

always want an executive summary to

them to save them reading the gory

details. It can be seen that life would

be much easier for everyone if all

reports only contained executive

summaries and no details at all. So the

same can be said for procedures, keep

them simple, concise and brief. Gone

are the days of having to justify ones

position by the weight of a document

written. Rather management should

recognise and reward workers who

write procedures that are simple,

concise and fit on one page of paper.

So getting back to our original issue

with the DBA. They have tight control

over the machinations of the process of

change in an environment and through

red tape slow down the process

resulting in the business

competitiveness being severely

hampered.

It gets back to management again and

short sightedness of them. The solution

is to change the basic belief systems of

any organisation. And that is, in

today’s environment mistakes are

made, mistakes aren’t necessarily a

bad thing, and procedures do not

always have to be put in place to

prevent mistakes from occurring.

Some self-help guru’s tout the line that

“a mistake is an opportunity for

improvement and advancement”. In a

way this is true. Programs are never

written bug free, they contain errors.

There are numerous reasons for these

errors (to be discussed in another

column).

Good managers in an organisation

should be like the grease on a wheel

axle. They should ensure the

organisation runs smoothly. They

should control the process and ensure

the teams that do the actual real work

do it efficiently.

Management need to be constantly

reminded that they are at least one

degree of separation from the

company’s customers and are not the

actual producers and moneymakers. To

say it simply, their role is an optional

extra. Putting together fancy project

plans or managerial studies only

justifies their position; it doesn’t make

the company more profitable. In fact

when it comes to the cause of most of

the large companies failing in the

marketplace, the common factor stated

was poor management.

In the new millennium, the role of

managers is going to be analysed

closely, especially as more workers

due to technological advances become

more empowered. The need for

managers will change and their

importance critiqued. To start with, the

whole hierarchical concept instituted

and maintained by management

(purely because they are at top of the

hierarchical positions) needs to be

reviewed, rethought and thrown out.

And no, this isn’t a call to start a

revolution.

As an analogy, lets look at this from a

technical viewpoint. Unix directory

structures look hierarchical but they

aren’t. They are more like a network.

They work well and are very flexible.

Microsoft Directory structures are

hierarchical and suffer from no end of

problems. On the plus side it must be

noted that later releases of the

operating system are improving on this

position.

In addition, the view that all workers

can one day rise to the position of

management also needs to be quashed.

It’s a completely inefficient viewpoint

that will not survive the rigours of the

new competitive decade. For most

people moving into a management

position this is typically a backward

step, and I cite the “Peter Principal”

here as proof in point.

When mistakes are made, this doesn’t

mean an opportunity to write

procedures, but rather quickly review

and evaluate why. People make

mistakes. Leave it at that and don’t

move into procedure writing mode. On

the other hand though, smart managers

in an organisation are quick to realise

that there are problems in their

environment, which are out of their

control and which they might have

caused. So they move to a new project

to escape them. In some cases, this

brilliant manoeuvre gets them

promoted, thus further showing how

being inefficient moves you up the

chain of command.

So once more in attempting to address

the core reasons why databases

perform poorly in an environment I

have successfully turned the discussion

around and come back to poor

management as one of the core reasons

for the badly performing databases.

The irony gets better as most managers

aren’t even technical and couldn’t

write a SQL statement let alone spell

SQL, yet they are in the enviable

position of controlling the IT

organisation. In their ivory towers they

justify this lack of technical prowess

by pointing out its their job to manage

people and not resolve the problems. In

fact many of the executive retreats

these managers attend reinforce this

mistaken belief, typically because the

people who run these retreats also have

no technical knowledge. What they all

tend to forget is that when you look at

the world’s richest and most successful

people (case in point Bill Gates), they

should realise that they are both

technically competent and good

managers. For management, they have

to be both, not one or the other.

So DBAs and Developers reading this

article are now critically looking at

their pointy haired manager,

wondering which category they fit into

and feeling comfortably smug that

even though they are given impossible

tasks to do and have to fight red tape

and bureaucracy, somehow its not their

fault, but its due to the incompetence

of their management. If at this point

you feel this way then this article has

been wasted on you, and my apologies

for wasting your time. I suggest you go

back to reading those Dilbert cartoons

that justify your position in the grand

cubicle of things.

When it comes to resolving these

issues and resolving the spate of

problems you find yourself in, don’t

blame, rather change. Database

performance issues have their inherent

problems rooted in the structural

weaknesses of an organisation. Over

the next decade the businesses that

grow and prosper are the ones that

organise their internal structure to use

the human abilities of their employees.

If you are an employee change the

organisation instead of moping and

whining about the plight you are in.

It’s time to throw out the old nineties

way of doing business and use a

different tact. Only then will the

performance issues of the database be

truly addressed.

If you haven’t worked it out, Redmond

Bim is a pseudonym for a rather frail,

old and haggard DBA languishing in

the back waters of a large corporate

giant, pining away the hours until

retirement. Or maybe not. Redmond

could be a young, Volvo driving

lunatic, hell bent on destruction and

driving to excess. Either way, its not

important who Redmond is, but if you

want to contact Redmond and either

congratulate him on this article or

want to know where he lives so you

can frail him alive for writing such

nonsense, then you are more than

welcome to send an email to the

publishers of this magazine. Under

careful supervision these emails will be

forwarded to Redmond’s private email

address. Suitable versed articles might

appear in the next column.

