
Donuts for DBAs IV – Documentation
By Redmond Bim.

Rather than my usual diatribe about the

incompetence of most managers in the

IT industry I thought I would look at a

forgotten and rarely covered topic on

the relevance of documentation in

programming code. Though I do

suspect that the usual readers of this

column would like me to at least have

a go at managers, I initially refrained.

On review the article seemed to lack

some of the usual lustre so I thought I

would add the following paragraph.

If you are a manager in IT (and for

those in management at the moment

who are reading this replace IT for

someone who deals with computer

people. This article was most likely

placed on your desk by a surreptitious

employee who is now carefully peering

over a partition looking to see your

reaction, wondering whether you will

even understand the jibe behind this

article) and you know you are not

comfortable at your job, or are

suffering from the Peter Principal **,

then leave and move onto bigger and

better things. The vacuum that is left

behind by your departure is bound to

be more efficient and definitely more

cost-effective than if you stay. Improve

the quality of the IT management pool

by leaving and ensure a better standard

is maintained. There is a statistic I

remember reading last week that stated

how 40% patients died less in the week

of a doctors strike. Sometimes having

less management is better.

Now let’s get going on the topic of

documentation in code. I stress in code

and not general user or technical

documentation, which is a separate

issue and one which I will not discuss

at this point. Not because I do not want

to. I really do, I would really like to

spend paragraphs going through the

need for and against it, but having a

reputation in a previous life for my

documenting capabilities I thought it

prudent to leave it to another Redmond

to cover this point.

There is a need to document code, but

that need has changed. In my early

junior days as a programmer, it was

imprinted on my mind to comment

every one or two lines of code. At the

time it was stated it was needed for

maintenance. Though I was writing in

COBOL and as I had to write

additional user and technical

documentation on what I built, I didn’t

realise that the lofty goals bestowed on

me by my work colleagues was just a

belated attempt at keeping me busy

and slowing me down from

programming at a rate that would have

left most of them way behind.

The tactic worked and at the end of

three weeks programming I produced a

well proven and working program,

composed of about twenty lines of

serious code with at least twenty pages

of supporting documentation. I am sure

that on the completion of my tour of

duty the program I wrote was

comprehensively maintained by a

vanguard of studious application

developers, burning the midnight hour

scouring over every line of

documentation written and using it to

enhance the application.

Instead, I imagine on needing

maintenance the program was deleted,

rewritten and the documentation

consigned to a dust bin (in those days

recycling was only for aluminium cans

and paper did grow on trees).

Based on years of experience and

writing hundreds of thousands of lines

of code, the one thing I have learnt is

that documentation in a program

actually hinders maintenance.

Some points to stress based on this

experience:

1. If external documentation has

already been written, why reproduce it

in the code? Because that is how it

always has been done, and been done

since code was first written. Which is

why I raised it, and believe this

concept should be thrown out the

window.

2. Comment Maintenance. If you put

documentation into the code then it has

to be maintained. One change to the

logic and the comments have to be

updated. So twice the work has to be

done. As well as this, realise that

programmers do not like writing

documentation, it slows them down

and the documentation then produced

is of no benefit. So I ask the question,

why force them? Oh, let Redmond

answer this please – simply, because

management want paper to justify a

projects existence.

3. Comments make it harder to read

and find information, thus making it

harder to maintain the code. There is

nothing more frustrating than wading

through pages of code only to have to

scroll past pages of comments

proclaiming each procedure and

function with author and modified

dates, and what the procedure is for,

why it was created in the first place, its

history, its point of existence and what

the programmer had for lunch that day.

It’s a waste of time. Yes it is. Believe

me, it is. If you don’t believe me you

probably haven’t programmed much

before and you are in that category

where you think you can program but

need to be hand held through the

coding process. Comments like this are

the ads of the programming world.

4. Use your screen. There is nothing

more frustrating than maintaining code

built for a 800x600 screen. Wake up,

most developers are on 1600x1200.

Use the screen to code in and stop

putting in all those useless line feeds.

This has nothing to do with comments,

but it aggravates me enough to want to

raise it.

The amount of documentation placed

in the code can depend on the coding

language used, but I follow the simple

logic which is: If someone is

maintaining the code they had better

understand the language it was written

in. If they don’t they shouldn’t be

maintaining the code and will do more

damage by changing it. If they are

experienced and understand the code,

then 95% of what is written should be

obvious to them. For PL/SQL, which is

where I am focusing this article on, the

language is verbose and is typically

coded with voluminous amounts of

SQL statements. Its obvious what it

does, so why comment the obvious.

The 5% of comments needed should be

reserved for the not so obvious. The

coding where something tricky was

needed to get around a bug or needed

to improve performance. If it’s a

comment it will stand out, it will be

easy on the eye and quickly read and

absorbed.

Most PL/SQL code is self

documenting. It’s a language which is

verbose and unlike C, its very hard to

hand optimise. This means that what

you write reflects what the code does.

So when it comes to documentation in

code, keep it simple and to a minimum

and everyone will be happier and the

code easier to maintain.

** Peter Principal is a term coined to

make reference to a public servant who

has been promoted to his/her level of

incompetence. In today’s environment

the Peter Principal applies equally well

to a manager in a commercial business

and can definitely apply to a manager

in a large organisation.

Redmond sometimes says things he

regrets. In his last article, “An

Interview with Redmond”, he lost his

temper when the interviewer grilled

him about his background. He cut the

interview short. His regret is that he

didn’t get a chance to say what he

truly thought of the paparazzi press

moguls that haunt his every move.

If you want to contact Redmond and

either congratulate him on this article

or want to know where he lives so you

can frail him alive for writing such

nonsense, then you are more than

welcome to send an email to the

publishers of this magazine. Under

careful supervision these emails will be

forwarded to Redmond’s private email

address. Suitable versed articles might

appear in the next column.

