
Live with being Locked into Oracle
Marcel Kratochvil

XOR

A Passionate Viewpoint

Nothing angers me more than having to listen

to some project manager start evangelising

about why the whole design of a project is

built around being open and not locked into

any one vendor. “Lets use cold-fusion or better

still, lets use Visual basic with ODBC”.

Well I have news for them, and lately I am not

so humble, meek and mild in delivering this

news. I am short and too the point: You are an

idiot. You have just doomed your project to

almost certain failure. Sometimes I am not so

nice as the above delivery, sometimes I get

really angry.

Lets face some reality here. Its not healthy to

admit being locked into a database vendor,

especially one that has made a lot of

aggressive sales. If you admit being locked in,

you are vulnerable to licence price increases.

That’s a separate issue to deal with and there

are ways to get good deals out of Oracle, but I

am not covering them in this article. Also,

vendor loyalty isn’t the issue here, its really

about tuning, scalability and management of

the database. The important issues. I am

beyond loathe for having to tune databases

written to be ported to other databases.

Live with it, when you have Oracle, write your

applications to work their best on Oracle. If

you do this, then you will get best value for

your licence dollar. If you don’t do it, then you

hobble your database and what’s more, you are

still locked in to it. Lets look at why its hard to

build an application that is portable across

other databases.

Row Locking
Sure other database offer row level locking to

the same isolation level that Oracle offers by

default, but for a number of vendors, it’s a

trade off. Turn on row level locking with read

consistency and performance as well and

scalability suffer.

Field and Column Length
Not all databases offer the same datatypes.

Some offer maximum field lengths of only 256

bytes, some goes as far as 8000 bytes. With

Oracle a Varchar2 field is 4000 bytes, but as of

Oracle9i you can start to treat Clobs as

Varchars. As an example try porting a field

that is over 100k in size and experience the

pain.

Maximum Row Size

A table in Oracle can have 1000 columns.

Some databases support no more than 256

columns. Its rare though to have a table with

more than 100 columns it, but the real issue is

the row size. A number of databases still have

an enforced limit of 8k per row, which matches

the block size of the database. Even though the

total number of columns in size could exceed

8k, there is a maximum limit of 8k per row (in

the old days it was 2k). That is, a row cannot

exceed the block it resides in. A large number

of Oracle tables I work on, routinely exceed

16k in size per row. Port the table and who

knows what errors will occur.

Multiple Blobs per table
In Oracle7 there was a limit of one long field

per table. In Oracle8 you could have as many

blob fields as columns. Not all vendors offer

the same luxury as this and treat blobs as the

forgotten cousin. It can be challenging to port a

table with more than one blob (or clob) in it.

Dealing with Blobs

When it comes to working with lobs different

vendors use different techniques. Oracle

provides a package called dbms_lob to allow

developers to manipulate them. Lob’s are

notoriously hard to work with, but this package

makes it fairly painless. Once you start to use

it, you will find it nearly impossible to port it.

SQL Queries
A SQL Query follows a standard but not every

vendor can keep pace with the standard. In

Oracle9i Oracle started supporting the new

join syntax, and yes so did some other vendors,

but how many? Write a query using this syntax

and there is no guarantee it will run on other

databases.

Look at Oracle10g and we see the new model

clause. How many vendors can or will even be

able to support this clause?

Extend this further and look at all the statistical

functions Oracle offers support for. This

includes support for multi-dimensional

analysis. Look at the CUBE and ROLLUP

clauses as well as GROUPING SETS and

transparent portability disappears.

So the choice is there, make it portable and

don’t use these wonderful features or use them,

and get the performance, get the simplicity in

application development and truly use the

power of the database.

Look at Scalar queries, order by statements in

views, and nested queries in the from clause

and it’s a case of some do but most don’t

support it.

But it doesn’t stop there.

Objects
Abstract data types, varrays, nested tables and

REFs. Start using these features and as

wonderful and powerful as they are, and ones

which I strongly recommend developers use

(by strong I mean, you are a novice donut

muncher if you don’t), there are hardly any

databases in the marketplace that can make

basic sense of them.

And Oracle internally makes use of Objects.

Look at Intermedia, Spatial and Text and

immediately you are using objects.

User Defined Functions
Build your own function in PL/SQL and

embed it in a SQL statement and voila it will

not be able to run on another database. And it

gets more challenging, look at all the supplied

functions Oracle offers, how many of those are

portable? The best example is the decode

function. Though superseded by the case

statement, it does not port easily, yet it is

frequently used in a large number of

applications.

Data Dictionary
If your application references a data dictionary

object then it will be a challenge to find the

equivalent (if there is one) in another database.

Next to impossible to port, but really useful to

make reference to in an application.

Rowid

Most developers cannot live without utilising

the rowid, yet each database has their own

equivalent construct. To be honest, some

databases don’t even support a rowid

equivalent, they need a defined primary key.

How much code would need to be rewritten to

remove a rowid at your site and how could you

live without it?

Constraints
Just because a database offers support for

constraints, it doesn’t mean they behave the

same way or work. Oracle6 allowed you to

define constraints but didn’t enforce them.

There are some databases out in the market

place in the same category.

Try doing a cascade update prior to Oracle 8i

and yep its very hard to do. The constraint

needs to be broken during the update. Only

since Oracle 8i did Oracle allow a constraint to

be broken during a transaction and only

enforced at commit. It’s a key feature which

most databases do not and most likely, will

never be able to support. Very hard to program

around.

Performance
All database vendors support the concept of

index creation, but have the limitations and

behaviour of those indexes been looked at?

Limitations with indexes are directly linked to

the key length and the Oracle block size. What

this means is that an index created in Oracle

might not be able to be created in another

database.

SQL queries are tuned at run time by the cost

based optimizer (CBO). Each database vendor

writes their own optimizer geared to work with

their database. Start tuning, tweaking or

rewriting statements to make use of the Oracle

optimizer and there is a good chance they will

have to be completely rewritten for other

databases. Not all vendors even use CBO and

rely on syntax parsing to optimize the

statement.

And all those other features
Lets not forget NLS (National Language

Support) and dealing with dates, sort behaviour

and time zones. And then there is using

materialized views, defining batch jobs,

sending mail and handling other data structures

like XML.

Security
Security between databases can be very

different. Not all database vendors have the

equivalent of profiles, roles, grants or even

integration with the operating system security.

Most in the end require the developer to build

their own security model on top of the

database. Build an application that extensively

uses Oracle security and then try and port it. It

will not be easy.

PL/SQL and Java
Start building stored procedures and triggers

and you are likely to do this in PL/SQL or

Java. How many other vendors support

PL/SQL and Java? Each has their own

programming language if they have one, and

none are easily portable. So you either write

triggers in PL/SQL and get great performance

or you build them into the application using C,

Perl or VB or something else and suffer the

consequences.

What is comes down to is that it is possible to

write an application that is portable across

most databases, but all that will happen is that

it will perform to the worst behaving database.

It will be clunky, clumsy and ultimately a

catastrophe.

So if you are in a project where your managers

insist on building an application that can be

easily ported between databases then remind

them they are incompetent. Use Dilbert

cartoons to back this up, nearly any one will

do.

If they come back and say, “Well SAP can run

across multiple databases”, ask them how

much effort each database vendor has to put in

to tune and port SAP to run properly with each

vendor, and even then there are still many

issues.

Find an application vendor that has written an

application that runs across many database,

and you will find one that does not use the

database at all except as a simple table

repository. No features of any note are used

and the database might as well be an Oracle

Version 6 one. All this means is that the

complexity is moved into the application rather

than being in the database.

My view is this, educate management, tell

them that it’s a fact of life you will be locked

in to the database. Its not such a bad thing, it

means you can then build applications that

work really well for that database. They are

still portable across hardware platforms.

And what makes this even better is that a large

number of tuning issues will disappear. Life

will be so much easier for the Database

Administrator and developer.

