
Moving to a Proactive Database Environment

Lets face it, managing a Database environment

can be very difficult to do. Who amongst you

as DBAs have constantly found yourselves

reacting to each situation that occurs ? The

table runs out of extents right near budget time,

and when fixing it you find there is no room

left on the disk to expand the tablespace the

table is in. By now you are in panic mode,

trying to find some where to put the datafile,

but there isn’t any room left, anywhere. Why

didn’t we buy some more disk when we had the

chance, you ask yourself ? That’s right, you

never had time to request it because you were

to busy fixing problems.

As a database administrator you will find that

you are constantly fire fighting, sometimes

controlling the blaze but never putting it out.

Only by moving to a proactive environment

can you overcome the burdens and

inefficiencies of the reactive environment you

might be in and in doing so enter an optimally

controlled and managed one. Such an

environment offers many benefits including a

reduction in database downtime, a finely tuned

database and an improvement in productivity.

So why the need to always react ? The answer

is found in the work practises of the

environment. By taking a step back and then

looking at how you are doing your work is the

first step, but more on this later. Lets first have

a look at why this situation has occurred.

With the need to cutback on resources and

increase productivity, the workload of the

DBA can be cut first because it is seen as not

directly benefiting the client. With the

resources cut right back, only activities which

are seen to be important can be focused on.

Lets have a look at two typical scenarios that

are most likely to be encountered :

1. The users of an application have

complained bitterly to management about

the slow performance of it. Management

are now asking you to drop everything and

fix it as a matter of high urgency. This

means spending a large amount of time

tracking the problem down. This involves

looking to see if there is a problem with the

tuning of the application, a problem with

the tuning of the database or if there is

insufficient machine capacity. In all cases it

is up to you, to find where the fault is, and

this takes time.

2. A table modification change is urgently

required in the production database. The

users are in desperate need of it. As the

DBA, you were just told to implement the

change and take for granted that it will not

impact the database. As it is urgent, there is

no time to properly review what is

happening in the upgrade. The next day the

discovery is made that the upgrade has

forced some tables to go into over 50

extents and there is a critical shortage of

free space left and this now has to be

addressed.

In both cases time and effort is being spent

doing extra work which could have been

prevented with the right amount of planning.

So to do your job properly, requires a

fundamental change in how you do your work,

with the aim to become proactive. The goals

are simple but can be difficult to implement :

• Anticipate and prevent problems before

they occur.

• Optimally tune the database.

• Optimally manage storage.

• Optimally tune the network.

• Minimise impact to the database.

There are numerous following such goals.

Optimally managed resources ensures that the

environment is efficiently tuned and managed.

Also, an optimally managed environment

ensures your resources are used efficiently and

cost effectively.

Minimising impact to the database involves

reducing the amount of maintenance that is

applied to the database. This in turn will ensure

that there is an increase in uptime for the

database and reduce the risk of an error,

especially an error resulting from fatigue

caused by working on the database at odd

hours of the night.

Role of the DBA

The remaining part of this article will detail

how such a move to a proactive environment

can be achieved. Moving to a proactive

environment is easier said than done. There are

a number of hurdles that must be jumped, but

when reached the benefits are worth the effort.

To start, a complete change in the philosophy

for how a database is managed is needed. The

role of the DBA needs to be revised. By

focusing on such a new role, the move to a

proactive environment will be so much easier.

The new role of the DBA can be stated as :

‘To ensure that the database performs to its

optimal, is fully secured and can be recovered

in time of need.’

To achieve this, the DBA can no longer be

consigned to the back room, out of sight and

out of mind. The DBA has to become more

actively involved.

Ensuring optimal performance

The first part, ‘ensure that the database

performs to its optimal’, is the most difficult to

implement and involves a number of steps.

For starters, one has to throw out the window

the concept that performance tuning is an

action which is done after the application is

built. In the database of the nineties,

application and database tuning go hand in

hand, and must be factored in from the very

beginning.

There are three critical inputs which must be

analysed when an application is built. They are

the user interface, performance and the

database. Each interacts with the other and

each has equal weighting (see Figure 1).

User

Interface

Performance

Database

Application

Figure 1 : The three most critical inputs for application development,

 from the DBA viewpoint

Only with the advent of GUI application

programming has the issue of the user interface

become apparent. An efficient GUI design

means that the application is efficiently used

resulting in a reduction in database and

network calls.

The design of the database must take into

account performance, and the user interface

will also affect the design.

All three inputs into the application design

require co-ordination by the DBA. They have

the knowledge on how the application works in

the environment and are in the best position to

control how the application integrates with the

database.

Cyclic Maintenance

To ensure that the database environment is

optimally tuned, the move must be away from

reacting to events, and instead actively plan

and then tune the database. There is a balance

between constantly performing maintenance on

the database and not interfering with the

database. At times it is true when it is said that

problems occur only after the maintenance has

been done on the database. So a good period to

aim for where no work is done on the database

is about six months (depending on the

volatility of a database application, the period

can range from 4-8 months).

Maintenance is introduced and performed on a

cyclic basis. The cycle involves reviewing the

database, performing maintenance, and then

leaving the database alone (see Figure 2). A

once off review is performed two to three

months after the database has been created, as

newly created databases are prone to change.

The aim is to perform a full database

reorganisation and tune every six months.

Performing this maintenance more frequently

will be disruptive to the users and unnecessary.

Performing it less frequently will result in the

database becoming out of tune and the danger

that objects will grow beyond their original

storage allocations. If for example, a two year

period was used, then it would be quite

difficult to predict storage requirements. There

are too many factors to take into consideration

and uncertainties that can occur.

Once the maintenance has been performed the

database is not touched except if an emergency

occurs. So the role of the DBA changes further

and they must now become an expert in

forecasting to calculate storage and CPU

requirements for a six month period.

Database Created

Database Reviewed

Maintenance

performed

Monitor and perform

emergency maintenance

only

Collect and store

information on storage

and usage.

Information extracted daily.

Tw
o w

eeks

T
w
o
to
 t
hr
ee
 m
on
th
s

Six m
onths

Figure 2 : Maintenance Cycle

Emergency maintenance is only performed

when something drastic occurs, that is the

stability of the database is threatened.

Examples include a table not being able to

grow into its next extent or the PROCESS

parameter being exceeded in the INIT.ORA

file. In these cases emergency maintenance has

to be performed because an event unforseen in

the initial planning was missed. These events

happen but should occur rarely. If they occur

frequently then the review has not been

performed correctly and procedures should be

adjusted accordingly.

Database Review

The review of the database is the most critical

step, and approximately two working weeks

should be devoted to it. The review involves :

• Analysing information collected about the

database from the previous six months and

forecasting growth and database usage.

• Liaise with areas (see Table 3) and

determining potential changes to the

environment in the next six months. For

example, there might be a plan to double

the number of users who access the

database.

• Liaising with management to acquire extra

storage and capacity based on forecasts. If

due to cost constraints, this capacity cannot

be acquired, then alternatives must be

explored.

The key to the review is obtaining information.

This is best handled by the DBA coding plus

running scripts and then storing information

about all the objects in the database. The

database is the best environment for the DBA

and PL/SQL the best tool. The information

extracted can be broken up into coarse and fine

grain (see Table 4).

Table 3 : Areas the DBA should liaise with when performing a review

 Developers

 Application Users

 Application Management

 System Administrators

 Storage Management

 Communications

• Determine if there are any communication

changes in the next 6 months

• Review capacity requirements for the next 6 months

•Determine if there are any hardware changes

in the next 6 months

•Review storage requirements for the next 6 months

•Determine operating system changes

planned in the next 6 months

•Review capacity changes required in the next

6 months

•Determine application changes in the next 6 months

•Determine changes to capacity in the next 6 months

•Review application usage

•Review data entry usage

•Determine upgrades planned in the next 6 months

•Review indexes and SQL statements

The initial investment required in moving to a

proactive environment is for the time to devote

to building the scripts and programs required

to extract the information from the database

and then store it (See Inset). It is this hurdle

which is the hardest one to jump, as it is

typically seen as a waste of time and effort.

Unfortunately, there are no known tools on the

market which perform all of this for you.

It is important that information should be

extracted on a daily basis and stored in a

central repository (see figure 5). This

repository is rather like a data warehouse.

Information extracted from the database is

used for two purposes. The first, as discussed

already, is used for the six monthly review.

The second purpose is to test to see if

emergency maintenance is required.

Coarse Grain Fine Grain

Tablespaces

Datafiles

Database statistics

 - UTLSTAT

Placement of files in the

 disk structure

INIT.ORA parameters

Network load

Tables

 - Storage

 - Size

Indexes

 - Storage

 - B Tree stats

Rollback Segments

Table 4 : Information required to perform analysis

It is important that the emergency maintenance

report details only objects that need to be fixed

immediately. The danger, which is common in

a lot of environments, is information overload.

By presenting too much information, the odds

increase of vital pieces being overlooked and

missed.

Reports are run against

each database. Reports

contain information about

each object and the database

environment

The reports are then loaded

into a central repository

(a warehouse of DBA

information)

Figure 5 : Creating a DBA warehouse

Analysis reports are run.

This includes exception reports.

Forecasting

Forecasting growth can be performed

automatically using linear analysis provided

one basic assumption is made and that is that

growth on the table is constant. By monitoring

growth over a period of time it becomes

possible to fit a straight line to it and then

predict if a table will exceed its storage

allocation (see Figure 6 and Table 7).

Extracting the data from each database is best

performed using PL/SQL. A procedure is run

which collects all the information, summarises

it and stores this information into a temporary

table. This table is then exported or unloaded

(using SQL*Plus) to an operating system file.

It is then loaded into the central DBA

repository. Alternatively the data can be copied

over using SQL*Net. Table 8, shows examples

of two PL/SQL procedures that can be used to

extract the information from the database and

the table used to store this information.

Time (Days)

B
lo
ck
s
u
se
d

T
ab
le
 w
il
l
ru
n

o
u
t
o
f
st
o
ra
g
e

Storage will be
exceeded at this date

Linear model fitted using
least squares method.

Figure 6 : Using least squares to fit a straight line to a graph modelling storage growth

 for a hypothetical table. Growth is assummed to be constant.

o o o oo
o o

/* This script will fit a straight to a set of points using the Method of Least

 Squares. The table being analysed has been simplified, and contains two
 columns X and Y. The X column relates to Julian days. The Y column relates to

 the size of the table in blocks. The report will extend the line &1 days,
 and test to see if there is sufficient storage in the tablespace (max_free)

 to store the information.This code can be simplified if 7.1 embedded functions
 are used. */

SELECT owner || ‘.’ || table_name,

 (trunc (avg(y) -
 ((((count(x) * sum(x * y)) - (sum(x) * sum(y))) /

 ((count(x) * sum(power(x,2))) - power(sum(x),2))) * avg(x))
 +
 (((count(x) * sum(x * Y)) - (sum(x) * sum(y))) /

 ((count(x) * sum(power(x,2))) - power(sum(x),2)) *
 to_number(to_char(sysdate + &1, ‘J’))))),

 max_free
FROM table_x_y

GROUP BY owner, table_name
HAVING
 (count(x) * sum(power(x,2)) - power(sum(x),2) <> 0)

 AND
 /* Test if (forecast growth - currently used) > storage free */

 (trunc (avg(y) -

 ((((count(x) * sum(x * y)) - (sum(x) * sum(y))) /
 ((count(x) * sum(power(x,2))) - power(sum(x),2))) * avg(x))

 +
 (((count(x) * sum(x * Y)) - (sum(x) * sum(y))) /

 ((count(x) * sum(power(x,2))) - power(sum(x),2)) *
 to_number(to_char(sysdate + &1, ‘J’)))))

 -
 blocks_used > max_free;

Table 7 : SQL Code used for forecasting growth (all code not shown)

Once all the information has been collated, use

the following checklist for doing maintenance

on the database :

• Recreate all tables with enough storage for

6 months growth and store the table in one

extent. Downsize tables if necessary.

• Allow room in the tablespace for five

extents worth of unanticipated growth, each

extent size to be consistent (see Table 9).

• Recreate all indexes (storage as for tables)

• Recreate all tablespaces. Defragment them

and store them in one datafile, except if

coarse grain striping is being used (see

Table 10).

• Remove obsolete users and objects.

• Modify INIT.ORA parameters.

• If the cost based optimiser is being used,

then run full statistics on all objects (or

estimate if you are satisfied with the

results).

• Review security.

By following the above steps, and doing a

thorough review of the database, satisfaction

can be gained that the database is correctly

tuned, and will stay tuned for the period of 6

months. This will leave more time for you as

the DBA to perform important tasks like

reviewing SQL code created by developers and

ensuring this code is accessing the database

optimally.

Securing the Database

The next step is to ensure that ‘the database is

fully secured’. This requires another change in

philosophy. The guiding premise is :

‘The DBA owns the objects in the database,

and is responsible for them. The DBA does not

own the data in each object. This responsibility

is left to an application manager.’

By owning each object in the database, the

responsibility for ensuring that each object is

backed up and can be recovered is firmly

entrenched in the hands of the DBA. They also

becomes responsible for ensuring each object

has the correct security on it, and has sufficient

storage. Other responsibilities include the

management of indexes, constraints, synonyms,

object tuning and database links.

Table 9 : Next Extent sizing chart

10

20

50

100

200

500

1000

2000

5000

10000

20000

50000

... etc

10

10

10

20

50

100

100

200

500

500

500

500

... etc

Initial Next

This chart details initial and next extents to be assigned to database objects. It

is important to stick to figures which can be easily absorbed by the DBA. This

reduces the chance of errors occurring when interpreting figures, and

improves on the understanding of how storage is being managed inside the

database. Once the next extent size reaches 500, it stays constant. This

simplifies storage management, as extents are now small and controllable.

Fragmentation is less likely to occur as database extents are consistent in their

size.

What the contents of each table are is not of

importance. How an application works and

hangs together is the responsibility of the

developers and the application manager.

From this premise the following work

principles can be determined :

• The DBA is not allowed to run scripts on

behalf of developers which manipulate data

in tables. As the DBA has no knowledge

about the contents of data in tables, they are

not in a good position to determine if the

scripts are valid. There is also the potential

for a security breach to occur.

• Developers should not run scripts in a

production database which will modify the

structure of tables.

• The DBA has a right to know how tables

are being manipulated, ie. what SQL

statements are run against database tables.

In addition to the above security controls, the

security of the database should be reviewed

when the 6 monthly maintenance review is

being performed including :

• Ensure all database users point to the

correct default and temporary tablespaces.

• Check all users with DBA type privileges,

and make sure they are valid.

• Check operating system permission on all

datafiles.

• Redundant accounts are removed.

• Roles and grants are valid and are pointing

to the correct objects, privileges and users.

Data Recovery

The final step in moving to a proactive

environment is, ‘to ensure that the database

can be recovered in time of need’.

Table 10 : Tablespace management tips

• Keep tablespaces to 100 Meg or less

- unless object is greater than 100 Meg

- easier to manage

• Do not have more than 10% free space per tablespace

- unless growth patterns warrant this

•Keep frequently accessed objects in separate tablespaces

- balance I/O

•Keep each tablespace in a single file

- unless using coarse grain striping

- reduces disk head movement when searching

- use O/S features for fine grain striping

•Locate index and tables in separate tablespaces

•Set default initial and next extent values to be twice the size

of the tablespace.

- prevents accidental table creation

- enforces table creation scripts to include an

 Initial and Next extent storage clause on them

To achieve this, an actual recovery of the

production database must be performed at least

once a year to check that :

1. The backups are working correctly.

2. There are storage devices available that can

be used to recover the database.

3. There is sufficient knowledge and expertise

in recovering the database.

The backup strategy should be reviewed and

the following questions should be asked :

1. If the database increases in size, can the

backups cope ?

2. Will the size of export files grow ? If so, is

there sufficient storage to contain them ?

3. Will the length of time a backup take to run

increase ?

4. Is there sufficient disk storage to handle an

increase in the size of the database ?

The ability to perform a recovery includes

testing the following scenarios :

1. A datafile is lost

2. The redo logs are lost (and mirroring is not

activated)

3. The latest backup failed, and recovery has

to be performed from an older backup.

Once the move has been made into a proactive

environment, discipline is required to ensure

that the environment remains stable. This

means that regular database reviews have to be

performed, security enforced and recovery

procedures tested. It is very easy to slip and

move back into a reactive environment.

So, the encouragement is there to move to a

proactive database environment. Such an

environment offers a lot of advantages,

including an increase in database uptime,

minimising the chance of problems and errors

occurring, finding problems quickly and also

and improvement in productivity.

It is not easy to move to such an environment

and when reached requires discipline to

maintain it. Once reached though, the benefits

are many and should offer you greater control

and flexibility in managing the database.

Article produced by Peter Sharman and Marcel

Kratochvil.

This article was created whilst Peter was working for the

Department of Human Services and Health (Australia).

Marcel is currently working for Oracle as a consultant in

Canberra, Federal Government Division.

Inset : The issues of packaged procedures

Planning on writing some PL/SQL for your

Oracle database ? If the answer is yes, then you

are not the first person to be doing this. With

release 7.1 of the Oracle database a wonderful

new feature of being able to embed your own

function in a SQL statement was introduced.

Such a feature will undoubtably open up a

Pandora’s box. Developers will start to write

more code in PL/SQL. If these developers are

in a client/server environment, then they should

be putting all the business code into packages

and storing this also in the database. So, rather

than the current 4 or 5 Meg of PL/SQL being

stored in the system tablespace, storage of over

100 Meg will be required, and possible a

whole lot more.

So what are the issues ?

• What is performance like if over 100 Meg

of PL/SQL is stored ?

• How do you manage all this code ?

• How much memory is really required ?

• How do you know what code is being used

and what code isn’t ?

• How can you tell the performance of

package ?

• Can packages be placed in other

tablespaces ?

• What is efficient PL/SQL code ?

• Will core package modules be written so

that common PL/SQL libraries can be

shared amongst all users ?

The release of Designer/2000 first highlighted

this issue. Over 50 Meg of extra storage was

required for the system tablespace.

Very soon, third party vendors will start

writing their applications in PL/SQL packages,

increasing the storage requirements even

further. And to really throw a spanner in the

works, what about applications like Oracle

Financials, how much storage will be required

to hold all its business rules? 200 Meg ? Are

we ready yet to manage such large amounts of

code ?

Now is the time to start preparing, planning

and investigating what the real issues are

behind storing large amounts of PL/SQL code

in the database, before it becomes a real issue.

Now is the time to be proactive.

Table 8 : Example of PL/SQL code used to extract statistics about tables from the database

/* This table is used to store statistical information about a table
 in the database. Extensions to the table include adding a date column
 so that information can be stored historically and adding columns
 to store more information about storage. */

CREATE TABLE table_statistics
 (
 owner varchar2(20),
 table_name varchar2(40),
 extents number,
 max_extents number,
 initial_extent number,
 next_extent number,
 used_blocks number,
 blocks_allocated number,
 tablespace_name varchar2(20),
 tablespace_free number,
 total_rows number);

/* Note : This code can only be run against a V7.1 or greater Oracle database */

CREATE or REPLACE PROCEDURE
 ind_table_statistics (v_owner IN VARCHAR2, v_table_name IN VARCHAR2)
AS
 v_extents number;
 v_max_extents number;
 v_initial_extent number;
 v_next_extent number;
 v_used_blocks number;
 v_blocks_allocated number;
 v_tablespace_name varchar2(20);
 v_tablespace_free number;
 v_total_rows number;

 source_cursor integer;
 ignore integer;

BEGIN

 /* This section of code involves creating and then running a dynamic SQL
 statement. The aim of the SQL statement is to count the total number
 of rows and used blocks in a table. This information can be extracted
 without impacting the statistics collected by the cost based optimiser.
 Note : The Oracle user running this procedure must have been granted SELECT
 access on the table. */

 source_cursor := dbms_sql.open_cursor;
 dbms_sql.parse(source_cursor,
 'select nvl(count(distinct substr(rowid,1,8)), 0),
 nvl(count(rowid), 0) from ' ||
 v_owner || '.' || v_table_name,
 dbms_sql.v7);

 dbms_sql.define_column(source_cursor, 1, v_used_blocks);
 dbms_sql.define_column(source_cursor, 2, v_total_rows);
 ignore := dbms_sql.execute(source_cursor);

 IF dbms_sql.fetch_rows(source_cursor) > 0 then
 dbms_sql.column_value(source_cursor, 1, v_used_blocks);
 dbms_sql.column_value(source_cursor, 2, v_total_rows);
 ELSE
 v_used_blocks := 0;
 v_total_rows := 0;
 END IF;

 dbms_sql.close_cursor(source_cursor);

 /* Extract storage information about the table. */

 SELECT extents, max_extents, initial_extent, next_extent,
 blocks, tablespace_name
 INTO
 v_extents, v_max_extents, v_initial_extent, v_next_extent,
 v_blocks_allocated, v_tablespace_name
 FROM sys.dba_segments
 WHERE owner = v_owner and
 segment_name = v_table_name;

 /* Extract storage information about the tablespace the table is in */

 SELECT nvl(max(blocks), 0)
 INTO v_tablespace_free
 FROM sys.dba_free_space
 WHERE tablespace_name = v_tablespace_name;

 INSERT INTO table_statistics
 (owner, table_name, extents, max_extents,
 initial_extent, next_extent, used_blocks, blocks_allocated,
 tablespace_name, tablespace_free, total_rows)
 VALUES
 (v_owner, v_table_name, v_extents, v_max_extents,
 v_initial_extent, v_next_extent, v_used_blocks, v_blocks_allocated,
 v_tablespace_name, v_tablespace_free, v_total_rows);

COMMIT;

END ind_table_statistics;
/

CREATE or REPLACE PROCEDURE
 all_table_statistics
AS

/* The purpose of this cursor is to fetch table names from the
 database that the user running this procedure has been

 specifically granted SELECT access on. Having DBA privileges
 is not sufficient. */

CURSOR c1 IS
SELECT owner, table_name
FROM user_tab_privs_recd
WHERE privilege = 'SELECT' AND
 owner not in ('SYS'); /* Add other applications here */

BEGIN
 FOR c1rec IN c1 LOOP
 ind_table_statistics(c1rec.owner, c1rec.table_name);
 END LOOP;

END all_table_statistics;
/

